Using Spatial Hints to Improve Policy Reuse in a
Reinforcement Learning Agent

Bruno N. da Silva
Computer Science Department
University of British Columbia
201-2366 Main Mall
Vancouver, BC Canada
+1 604 822 3061

bnds@cs.ubc.ca

ABSTRACT

We study the problem of knowledge reuse by a reinforcement
learning agent. We are interested in how an agent can exploit
policies that were learned in the past to learn a new task more
efficiently in the present. Our approach is to elicit spatial hints
from an expert suggesting the world states in which each existing
policy should be more relevant to the new task. By using these
hints with domain exploration, the agent is able to detect those
portions of existing policies that are beneficial to the new task,
therefore learning a new policy more efficiently. We call our
approach Spatial Hints Policy Reuse (SHPR). Experiments
demonstrate the effectiveness and robustness of our method. Our
results encourage further study investigating how much more
efficacy can be gained from the elicitation of very simple advice
from humans.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— intelligent agents.

1.2.6 [Artificial Intelligence]: Learning — knowledge acquisition.

F.1.2 [Computation by Abstract Devices]: of
Computation — Probabilistic computation

Modes

General Terms

Algorithms, Design, Performance, Experimentation.

Keywords
Spatial hints, Policy reuse, Reinforcement learning, transfer
learning.

1. INTRODUCTION

Reinforcement learning is a popular technique in the design of
intelligent agents [2,6]. However, the large state- and action
spaces of some domains are sometimes a severe limitation to the
performance of the agent on a learning task. While traditional
algorithms tended to explore the environment and exploit the

Cite as: Using Spatial Hints to Improve Policy Reuse in a Reinforcement
Learning Agent, Bruno da Silva and Alan Mackworth, Proc. of 9th Int.
Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10-14, 2010, Toronto, Canada,
pp. 317-324 Copyright © 2010, International Foundation for
Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
rights reserved.

317

Alan Mackworth
Computer Science Department
University of British Columbia
201-2366 Main Mall
Vancouver, BC Canada
+1 604 822 3061

mack@cs.ubc.ca

information learned during exploration, new approaches attempt
to overcome this limitation by using some input other than the
current navigation of the agent and the collected rewards. The
expectation is that this external source might assist the agent in
reaching a satisfactory performance more effectively.

One such external source is to allow humans to guide the
reinforcement learning agent. For example, by evaluating how
real users provide biased feedback, Thomas and Breazeal [9]
adapt the interpretation of the reinforcement signal to extract
information about future explorations, as well as the evaluation of
recent actions. Another possibility is to employ heuristics or
expert knowledge to the function approximation method in order
to incorporate information about preferred actions [3].

Another type of external source is the reuse of knowledge from
the tasks that were learned in the past. This knowledge reuse is
known as transfer learning [7]. For example, Taylor et al. [8]
show that mappings linking states and actions of past tasks to
states and actions of the current task allow the agent to find a
good bias for the Q-value initialization. This approach (called
Inter-Task Mappings) enables the agent to reach a satisfactory
performance faster than when learning tabula rasa. However,
Inter-Task Mappings require expert knowledge of both the past
and current tasks, which might be very difficult or costly to elicit.

When the existing policies share the same space and action spaces
with the current task, an alternative approach is direct
experimentation with past policies in the new environment. This
approach is called Policy Reuse [1], and its insight is that if an
existing policy is adequate for a new task, then the reuse of this
policy will lead to the collection of higher rewards. Therefore,
Policy Reuse allows actions dictated by existing policies to guide
the exploration in the new task, at the same time that the
reinforcement signal is used to update the Q-values and construct
a new policy. Like an N-armed bandit, the algorithm repeatedly
samples from the set of policies to determine if one will be the
reference for each episode. If no policy is selected, a Q-Learning
episode is executed. The policy selection is biased towards those
that yield higher rewards. Therefore, the algorithm converges to
the use of a similar past policy (if any) with no human input other
than the design of the reward function.

Clearly, there is a qualitative spectrum over the amount of human
assistance in reusing past policies. While Inter-Task Mappings
require a significant effort from humans, Policy Reuse needs
none. Therefore, one open question remains regarding the right

level of independence from humans; in other works, is there a
method that improves the performance on the learning task
without requiring too much human assistance?

Inspired by this reflection, we extend the Policy Reuse method to
incorporate spatial hints from users. More concretely, instead of
relying just on the set of past policies learned by the agent, we
allow users to optionally specify reference points from the state
space for each policy. This information allows our method to
more efficiently integrate complementary policies that work well
in different situations.

This paper is organized as follows: Section 2 contains the formal
problem definition. Section 3 introduces our contribution, the
Spatial Hints Policy Reuse (SHPR) algorithm. Experiments are
described in Section 4. In Section 5 we present a general
discussion while Section 6 ends with our conclusions.

2. PROBLEM DEFINITION

We define a Reinforcement Learning problem using a Markov
Decision Process (MDP). An MDP is a tuple < S, A, T, R >,
where S is the set of states, A is the set of actions, R: Sx A 2> R
is a reward function, and T: S x A x S = [0,1] is the transition
function. T and R are unknown to the agent.

Definitions 1, 3 and 6 are from [1, pp. 721]:

Definition 1. A domain D is a tuple < S, A, T >, where S is the set
of all states; A is the set of all actions; and T is a state transition
function, T: Sx Ax S = [0,1].

This definition characterizes the invariants across the current task
and all tasks that will be reused by the method. It enables a policy
defined in one task to be executed for a different task in the same
domain.

Definition 2. A policy m: S = A assigns one action for each
member of the state space of some domain.

Definition 3. A task Q is a tuple < D, Rg >, where D is a domain,
and Rg, is a reward function, R: Sx A 2> R.

Therefore, the only difference across tasks that are defined in the
same domain is the different reward that an agent receives after
executing actions in certain states.

Definition 4. A hint h is a pair < m, s, >, where 7, is a policy
defined on the domain D and s, € S(D) is a state in the state space
S of D. We call s, the reference point of the policy m,.

Definition 5. A hint library L is a set of n hints {h,,...,h,}. 3D,
such that each hint h; € L solves a task Q = <D, R >.

Therefore, every hint in the library is defined over the same
domain. This makes every policy and state across all hints in L to
share the same domain as well. The library can have hints that
share the same policy, or even hints that share the same reference
point.

Alternatively, Policy Reuse (which we will use as a baseline)
defines a policy library:

Definition 6. A policy library, L, is a set of n policies {my,...,m,}.
Each policy m; € L solves a task I =< D, Rq; >, i.e. each policy
solves a task in the same domain.

318

We are interested in episodic tasks with absorbing goal states, i.e.
P(Sgoab@,Sg0a) = 1, Va. By analogy with the scheduling problem
we define an episode as follows:

Definition 7. A step t begins in a certain state s, and ends when
the agent executes an action a, and receives a reward r, for that
action in that state. A slot ¢ is a sequence of k steps.

Definition 8. An episode is a sequence of slots {Gy,...,0y.;}, each
of them containing the same number of steps (except possibly the
last one). An episode ends after reaching the maximum number of
slots k or when the goal state is reached.

As illustrated in Figure 1, our method schedules policies (or any
algorithm that dictates which actions to take given a state) to slots
in each episode, much like a pre-emptive scheduler of an
operating system.

Slot occupied by m,
A

L

e ™

Episode n

l'tlll'tz

n-1 n+1
Figure 1. We define an episode as containing k slots. Each slot
is occupied by a palicy (or an exploration strategy such as &-
greedy) that will dictate the actions to be taken in the steps of
thisdot.

This definition is a generalization of the standard concept of an
episode. In Policy Reuse, for example, the same policy is used
across all slots of the same episode. Likewise, one could not use
any existing policy and let a particular algorithm dictate actions
for every slot of all episodes.

The evaluation metric is defined as the average reward per
episode:

k+t
Y Tkte

where E is the number of episodes, k. is the number of slots in
episode e and t; is the number of steps in slot k (either T or less if
the goal state was reached). y € [0,1] is the discount factor for
future rewards, and 1y, is the reward received in step t of slot k of
episode e.

3. APPLYING SPATIAL HINTSTO
POLICY REUSE

This section explains how we use a hint library to better exploit
existing policies and learn a new task. The challenge when
reusing policies is to discriminate the states of the world in which
some policy from the library should be reused from the states of
the world in which no policy from the library would be useful
(therefore requiring independent exploration).

While a library of hints is a good initial approach for this problem,
it doesn’t solve it altogether. Since a hint associates a policy with
a single state, it would be excessive to ask users to specify the
ideal policy for every state of the world. Therefore, some metric is
needed to estimate how useful each hint could be for each state of
the world.

Naturally, such a metric should consider the distance between
the current state of the world and the policy’s reference point.
Hints that are farther away would be less likely to be useful than
closer hints. Additionally, the quality the hints might not be
uniform. While some existing policies might be more suitable to
be executed in more states of the new task, some of them might be
less useful, and therefore should exert a weaker influence on the
learning agent.

For this reason, we associate with each hint h; a variable reach;
which estimates how good the policy m; is around its reference
state s;. Policies that perform well around their reference state
should have their respective reach increased to extract significant
contributions from good existing policies. Likewise, hints that are
not as good (e.g. whose policy is not a good alternative for that
reference point) should not be reused as often. This has an
analogy to the laws of attraction from physics. The reach of a hint
can be considered its mass. Bodies with stronger mass exert a
stronger force of attraction, just like bodies that are closer to the
respective object. Therefore, we need a metric that is proportional
to reach;, and inversely proportional to the distance between the
current and reference states. That’s why we chose to assign
policies to slots with probability proportional to w;.

reach;

W. — "
' 1+ distance(current state,reference state;)

where distance can be any metric defined over the state space. In
this paper, we use the Manhattan distance.

After the assignment of a policy =; to a slot, the execution of this
slot starts. The selection of actions in this slot will be determined
by two sources: the existing policy m; and an € —greedy procedure
based on the Q-values of the current task:

best action, with probability

& — greedy(mnew) {random action, with probability 1 — ¢

The action selection is initially determined by w;. In subsequent
steps, there is a probabilistic balance between actions by m; and
& —greedy, until the end when & —greedy dominates the action
selection process (Figure 2).

Probability of selection

1
g—greedy
T
0 \
Beginning of slot End of slot

Figure 2. Action selection process in a slot combining an
existing policy ; and an € —greedy procedure.

Table 1 describes the algorithm executed during each slot. After
the policy for that slot ; has been determined, it is passed together
with the initial state of the slot to the algorithm. The basic
iteration is repeated for the maximum number of steps T, or until
the goal state is reached. The & —greedy strategy starts at a
specific level of randomness ¢y, and becomes greedier in every
step by a factor of Ae. The update of the policy is performed no
matter where the action came from. Therefore, even if an action
that was dictated by an existing policy is not appropriate in this
new task, there is still useful information that is collected through
this update of the Q table.

Table 2 contains the definition of an episode. Naturally, it consists
of a sequence of calls to the slot algorithm. We start by
considering the initial state, and based on this state, computing a
probability distribution over the existing policies (in the library of
hints).

This distribution is proportional to the past performance of each
function (reach;) and inversely proportional to how far that policy
was referenced by the user (1+dist). After the chosen policy
guides the agent in one slot, the current state s, changes,
yielding a different distribution over policies.

Algorithm slot(7t;, Sinitiqr)

p:= 1.00
Scurr *= Sinitial
E = &

Repeat T times or until S¢yrr = Sgoar

waton = {,_ Mttty

Execute action, collecting S, and reward r

Q™ew (Seurr action) := (1 — a) Q™ew(Sey,r, action) +
a[r+ ymaxg Qe (Spexe, @) |

p=p- 1/T

= Snext

min (1, + Ag)

Scu‘rr

€=

Table 1. Slot exploration strategy

Algorithm episode(S;p;tiq;, Library)

Scurr *= Sinitial

Repeat K times or until S, = Sinitiar

reach;

Letw; = ——
t 1+distance(Scyurr,Si)

Vi € Library

Wi

Select according to distribution p(m;) = .
1)

Execute slot(wt, S¢yprr)

Retrieve new Sy, from slot

319

Table 2. Episode definition strategy

The algorithm episode above defines how the library of hints is
used to generate an episode of the learning task. Initially, this
library of hints used in each episode is composed of those existing
policies selected by the user. However, these policies might be
undefined or very ineffective in some parts of the state space.
Therefore, simply reusing the same set of hints in every episode
might be too inefficient an approach.

Naturally, one solution to overcome the inadequacy of existing
policies would be to use a traditional exploration/exploitation of
the environment. We already do this by switching from the use of
the existing policy and & —greedy in each slot (Figure 2).
However, it might still be the case that the area around the initial
state of an episode might not be adequately covered by existing
policies. Therefore, before the start of each episode, we artificially
introduce an extra entry in the library of hints containing the
e—greedy policy having the initial state s;,;, as reference point,
with different values of reache—greedy. This constitutes an
experiment, which tries to identify which is value of reache—greedy
in sia Will better combine with the existing policies to lead to
higher rewards.

Given that distance(sinitial,referenceg_greedy) = 0, we can
vary reache—greedy from a low to a high value to estimate more
precisely how the episode performs when & —greedy has a low
probability and when it has a high probability of being assigned to
one of the slots of the episode. Naturally, this is not a perfect
experiment because future tests setting a higher value of
reache—greedy Will have benefitted from the knowledge acquired in
past tests. This will create a bias towards higher values of
reache—greedy. However, this is not necessarily a bad thing. One of
the purposes of introducing e—greedy in the first place is to
slowly get rid of existing policies, and with each episode to rely
increasingly more on concrete knowledge about the current task.
The exploration dictated by e—greedy relies on this concrete
knowledge, and is therefore beneficial to the learning agent in an
advanced stage of the process. An abstract version of our
algorithm is presented in Table 3.

Abstract version of SHPR

Repeat
Pick a state from the state space
Repeat the question

For this state, are the existing policies enough? If not,
how strong should the e—greedy policy be to jumpstart the
collection of good rewards?

Design an experiment to answer this question, and...

Record an e—greedy entry in the library of existing policies
that’s as strong as necessary.

Table 3. Abstract definition of SHPR

Finally, Table 4 presents the complete version of our algorithm. It
is called SHPR, which stands for Spatial Hints for Policy Reuse.
We start by repeating a number of times (E, an input parameter)
the procedure equivalent to the first Repeat from Table 3. Next,
the algorithm needs to determine how many times the question
from the second Repeat from the abstract definition is going to be
asked (REPETITIONS PER EPISODE is another input

320

parameter). The experiment is equivalent to the while loop, where
each iteration is a test with a different hypothesis.

Algorithm SHPR(Library)

For each ; € Library
reach; := INITIAL_REACH
Repeat E times
Sinitial *= SelectInitialState()
reachs greedy = 1
maxReach := MaXycriprary reach;

__|maxReach - reache_greeay|
- REPETITIONS_PER_EPISODE

accRewards =0
accWReach :=0

While reachs_greeqy < maxReach

Areach :

tempLibrary := Library U { & — greedy(mpew)
with reference at Sjpijtials
reach = reachg_greeqy}
Execute episode(S;p;¢iqr, tempLibrary)
Retrieve total discounted reward R from episode
For each m; € Library
reach; := reach; + participation; * R,

slots from last episode using m;

where participation;

#slots from last episode
accWReach := accWReach + reach;_greedy * R
accRewards := accRewards + R

Teachs_greedy = T€AChs_greedy + Areach

. accWReach

reaChs—greedy = /accRewards

Library := Library U {& — greedy(mtyew)
with reference at Sipjtial

reach = reachg_greeqy}

Table4. The Spatial Hintsfor Policy Reuse algorithm

There are two points where the reach table is updated. The first is
immediately after an episode, where the method can estimate each
policy’s contribution to the recent reward, and update their future
influence accordingly. And finally, after the experiment it is
possible to evaluate the average of the reache—greedy Over the

(achReach /

different rewards accRewards)-

4. EXPERIMENTS

The purpose of our experiment is to evaluate the performance of
our algorithm against two baselines: the PRQL algorithm [1] and
the Q-Learning algorithm [2,6,12]. We selected these specific
contributions because we want to evaluate the relative
performance of our method against approaches that require less
human input. The PRQL algorithm is the method we are trying to

extend, and Q-Learning is a standard baseline, against which
PRQL was first compared.

We tested each algorithm with two exploration strategies: the

e—greedy defined above and the Boltzmann strategy, where each
eTQ(s.ay)

Z_T—Q(sla), where 1 is a

parameter whose initial value 1, is increased by At after each

episode.

action is chosen according to P(a;) =

All three algorithms have been implemented and are available on
the Web together with the supporting data. '

4.1 Domain

We selected the Robot Navigation domain. We made this choice
in order to have a proper comparison with existing contributions.
This is a standard evaluation domain in the transfer learning
literature [4,5,11], and we used exactly the same specification as
when the PRQL algorithm was originally evaluated [1].

o o -

s=]»

0 i

-

s=I»

. -

(a) Task 4 (b) Task Qo : E t
q=d= [T T

=1 —
ojz=]n
I . -

(c) Task €25

=]
1T

(d) Task Q4

Figure 3. The tasks within the domain studied. Figures 3a-d
represent the existing policies (past tasks) used by our agent.
Figure 3e represents the current task we want to learn. In all
of them, the red dot represents the goal state, and the green
dot isthereference state (when applicable).

This domain is defined as a discreet 24 x 21 rectangle (Figure 3).
The set of actions is {Left, Right, Up, Down}, which move the
agent one position to the left, to the right, to north, and south,
respectively. If the movement would crash the agent into a wall,
then the action has no effect (i.e. the agent maintains its current
position).

Five tasks are represented in Figure 3. In all of them, the red
square represents the goal state of the task. Figure 3e represents
the task we want to learn. Figures 3a-d represent the existing
policies in our library. Their policy is the optimal policy necessary
to reach their respective goal (i.e. for each state, to take the action
that minimizes the shortest distance to the goal state). For these
existing policies, the green square represents their reference state,
whenever applicable.

It is noticeable that tasks Q; and Q, are very similar to the one we
want to solve. Their goal state is closer to the goal of the new task,
and therefore their optimal policy shares a greater percentage of
decisions with the policy of Q than the policy of the more
divergent tasks, namely m, and more so m;.

! http://people.cs.ubc.ca/~bnds/.

321

In all our experiments, the agent receives a reward of 1 when it
reaches the goal state and 0 otherwise.

4.2 Parameter configuration

When selecting the parameters of the baseline algorithms, we used
the same values as reported in [1]. Neither these nor those
parameters of our algorithms are known to be optimal. In this line,
a proper study exploring the parameter space of these methods in
this domain remains the focus of future work.

For the Q-learning parameters, the discount factor y = 0.95, the
learning rate oo = 0.05. The e—greedy strategy was configured
with gy = 0.00 and Ae = 0.0005. The Boltzmann temperature was
adjusted with =0 and At=5

The PRQL algorithm was executed with the total number of
episodes K = 2000, H = 100 steps per episode, the probability of
choosing an existing policy ¢ = 1.00, and ¢’s decay rate v = 0.95.

We configured our algorithm according to the configurations
above. First, we set REPETITIONS PER EPISODE = 10. In
order to have a fair comparison between algorithms, and since we
are repeating each episode 10 times, we set our total number of
episodes E = 200 (instead of the equivalent 2000 episodes of the
remaining algorithms). For the same reason, since we set the
maximum number of slots per episode k = 10, we configure the
maximum number of steps per slot T = 10 (to be equivalent to the
100 steps per episode of the other algorithms).

We discuss the effects of repeating each episode in Section 5.

4.3 Reaults

This section reports the empirical results from our experiments. In
each experiment, a different library of existing tasks was selected.
For each of the algorithms evaluated (SHPR, PRQL, and Q-
Learning), we initially confronted the two action selection
strategies (e—greedy and the Boltzmann strategy). However, the
performance of e—greedy dominated the Boltzmann strategy in
the SHPR, and Boltzmann dominated e—greedy with the
remaining two methods. That’s why we only report the
dominating strategies below.

The first experiment (4.3.1) illustrates the behaviour of our
method using a favourable library configuration. Only good
existing policies were selected, thus contributing to a better
performance of our algorithm. In 4.3.2, we introduce a bad
existing policy into our library. In 4.3.3, we present the case when
all policies in the library are not useful. The results are presented
through the metric introduced in Equation (1). All results
displayed are an average of 10 executions of each method under
the same conditions.

431 lerary = {Ql, Q>, 94}

This experiment uses the policies ; Q, and Qy, from those tasks
represented in Figures 3a, 3b and 3d, respectively. It is
noteworthy that tasks Q; and Q, are very similar to the task we are
learning. In theory, this benefits both our algorithm and PRQL.

Results of this experiment are presented in Figure 4. An entry at
this graph, say at (200, 0.02) means that the average reward of the
respective algorithm after it ran the first 200 episodes was 0.02
(see Equation 1). Our algorithm collected the highest average
rewards in this situation no matter what the action selection
strategy. However, e—greedy demonstrated to be the best strategy
for our method. This is unlike the other algorithms, where the
Boltzmann strategy always yielded better results.

In this case where the library of policies contains favourable
entries, PRQL is able to outperform Q-Learning when using the
Boltzmann strategy. The use of the e—greedy strategy makes
PRQL even worse than Q-Learning using that same strategy.

WiE) —SHPR g-greedy

---PRQL Boltzmann — -Q-Learning Boltzmann

DEEF: Epbodes

Figure 4. Comparison using existing policies m;, @, and my.
This library contains only favourable entries for both SHPR
and PRQL. The legend displays the entries in order of final
accumulated reward, from highest to lowest.

43.2 L|brary = {le .Qz, .Qg, .Q4}

In this experiment, we added one entry to the previous library, Qs,
which is detrimental to SHPR and PRQL learning the current task.
This entry has its goal state in the opposite corner of the state
space, and therefore most of the actions it dictates are bad
decisions for the learning agent. This experiment tests the
behaviour of the algorithms in this more realistic scenario.

Figure 5 presents the results of this experiment. In this scenario,
again SHPR performed better than the other methods.
Interestingly, although it did take longer to converge, SHPR
reached the same average as it did without the bad policy. The
algorithm correctly tended to ignore the bad entry in the library, in
favor of the better alternatives, causing hardly any damage to the
final policy. This suggests robustness against bad elements in the
input library of hints.

wim —SHPRE-greedy

—-Q-Learning Boltzmann - --PRQL Boltzmann

S 215 F: Eplsodes

Figure 5. Comparison using existing policies mr;, w5, @3, and m,.
This library contains entry 3 which should be detrimental to
SHPR and PRQL. The legend displays the entriesin order of
final accumulated reward, from highest to lowest.

322

Just like in the previous experiment, the use of e—greedy yielded
better results than the Boltzmann selection strategy. And again,
this is the opposite of what happens with the other methods. Q-
Learning managed to outperform PRQL by a small difference
using Boltzmann and by a significant difference when using
e—greedy.

433 lerary = { Q3, 32, L3, Qgc}

The goal of this last experiment is to evaluate our algorithm using
a library consisting of less favourable entries. While before we
had entries that made up for a bad entry in the library, now the
library consists of repetitions of policy m;, whose goal is
somewhat opposed to the goal of our learning task. Figure 6
depicts this library. Figure 6a us simply a repetition of Q3, while
Figures 3b-d introduce the same task with different reference
points.

Results from this experiment are represented in Figure 7. The
most intriguing result is the persistent good performance of our
method relative to the others. Naturally it performed worse than
with the previous two libraries, but SHPR still outperforms the
other two algorithms, no matter which action-selection strategy
was employed. Still, e—greedy performed better than Boltzmann
in our algorithm, but worse in the other methods. PRQL
performed worse than Q-Learning, and converged to very similar
results, no matter which strategy is used.

][

(a) Task 3 (b) Task Qaa

e e

(c) Task Qs (d) Task Qac

Figure 6. A new library of bad policies used in the experiment
described in 4.3.3. In this experiment, we removed all the good
entries from the library and create three extra copies of the
bad policy, with reference states covering different areas of
theworld.

This last experiment really suggests a strong resistance to the use
of policies that are significantly different from the current task. As
is the case with the policies in this library, the only actions that
benefit the agents are those inside the rooms that do not contain
any of the goal states. But whenever the agent enters the corridor,
these tasks take it to the direction that’s opposite to where it
should go. SHPR is able to reuse the subset of the policies that’s
beneficial to the current task.

wiy —SHPQegreedy ---Q-learning Boltzmann — PRQL Boltzmann

CED O Epbsodes

Figure 7. Comparison using existing policies mz, @z, @3y, T
This library contains only entries that should not help SHPR
or PRQL. These hints reuse the dissmilar task Qs with
different reference points. The legend displays the entries in
order of final accumulated reward, from highest to lowest.

5. GENERAL DISCUSSION

In SHPR, one of the main departures from standard exploration of
the environment is the repetition, in a sequence of episodes, of the
same initial state. Naturally, if the agent must learn from a limited
number of episodes, this feature of our method restricts the
coverage of the state space by the agent. However, as the agent is
allowed to explore the environment for a longer period of time,
this deficiency fades away. For a long enough training sequence,
the only difference this strategy makes (against one that randomly
picks a new starting state every episode) is the order in which the
state space is covered. Moreover, the subsequent episodes benefit
from the more robust knowledge collected from previous episodes
in our method.

As we mentioned in Section 1, our motivation for this work comes
from the different methods of reusing information from past
policies to learn a new task. One of the ways to classify these
methods is with regards to how much information they require
from humans. In this respect, it is important that our method
achieves a considerable improvement in performance over others
without imposing a significant burden to humans. The information
we ask for is easily elicited from humans, who can reason about
high-level task differences and make sense of the relation between
different tasks. This kind of abstract reasoning, together with
supporting task information, is what lacks current learning
algorithms. Therefore, this framework seems promising to enable
successful collaborations between humans and intelligent agents.

Even though we claim that the input we request from users can be
easily collected, to the best of our knowledge, no metric exist
which measures how difficult some piece of information can be
collected from humans. Of course, this is a very difficult problem,
and seems to be very challenging to define even in an ad hoc
manner. However, since we are studying trade-offs between
solution qualities and additional input, advances in this area might
help better evaluate future contributions.

Nevertheless, it is also noteworthy how robust our algorithm is to
input that in a significant subset of the state space provide a bad
policy to be executed. This was demonstrated especially in
Section 4.3.3. This also alleviates humans from having to
construct detailed and accurate models in order to provide good
input to the algorithm.

323

The introduction of several slots composing an episode is similar
to the options framework introduced by Sutton et al. [7]. While
before the agent would reuse a set of sub-policies, and follow a
member of that set for the entire length of the respective sub
policy, now we reuse entire policies learned in the past, and our
method has the ability to interrupt the policy executed in a given
slot even if that policy could provide actions for the subsequent
states observed by the agent. However it is straightforward to
reduce the slot scenario we presented here to the options
framework.

All of our experiments demonstrated the superiority of the
e—greedy action-selection strategy over Boltzmann in SHPR. This
is in contrast to the baseline methods, where Boltzmann performs
consistently better. The Boltzmann strategy determines in the
initial stages a uniform distribution over actions, and then
converges to a more biased behaviour towards those actions that
relate to higher Q values. e—greedy, however, adopts a binary
behaviour. It either selects the best action available or a uniform
distribution over all actions. It might be the case that, since our
method already switches from exploitation to exploration inside
each slot (Figure 2), our approach is complemented by the
e—greedy behaviour. However, a careful analysis of this
behaviour remains the object of future study.

The empirical studies reported here were conducted with the
objective of demonstrating how our method can outperform the
best known configurations of PRQL. However, neither the
configuration of our SHPR nor that of PRQL is known to be
optimal. This is specially the case with our algorithm, whose
configuration was determined by the search for a fair comparison
with the reported best configuration of PRQL, as the first
principle. Therefore, an empirical study evaluating the behavior of
SHPR with different parameters is the object of our current
efforts.

Another important empirical question has to do with the question
of convergence of our methods. In all our experiments, it is not
clear what would be the long term performance of SHPR, had
longer trials (or episodes) been recorded. From initial results, it
seems like stagnation is not reached with the small number of
episodes reported here, but a definite conclusion to this question
cannot be reached yet.

Another topic of future work is the evaluation of the method in
different environments. We implemented this specific robot
navigation domain because of previous results reporting the
success of PRQL in this problem. However, the application of
learning algorithms in noisy domains is of enormous practical and
theoretical importance. These and other questions are all topics for
future work.

6. CONCLUSIONS

This paper introduced Spatial Hints Policy Reuse (SHPR). This is
an algorithm that learns to perform a task using policies from
tasks that were learned in the past in the same domain. Our main
contribution lies in showing how, by allowing users to specify one
or more reference points for past policies, a significant
improvement in performance can be reached. This is a very
simple type of information that can be elicited with little cost from
users. We demonstrated how our method is robust to unfavourable
input, and how it extracts information from past policies that share
some degree of similarity with the current learning task.

—
—
—_

(3]

(4]

REFERENCES

Fernandez, F., and Veloso, M. 2006. Probabilistic Policy
Reuse in a Reinforcement Learning Agent. In Proceedings of
the Fifth International Joint Conference on Autonomous
Agents and Multi-Agent Systems AAMAS '06 (Hakodate,
Japan). ACM Press, New York NY USA, 720-727. DOI=
http://doi.acm.org/10.1145/1160633.1160762.

Kaelbling, L., Littman, M., and Moore, A. 1996.
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research (JAIR), Vol 4 237-285 DOI=
10.1613/jair.301.

Maclin, R., Shavlik, J., Torrey, L., Walker, T., and Wild, E.
2005. Giving Advice about Preferred Actions to
Reinforcement Learners via Knowledge-Based Kernel
Regression. In Proceedings of the Twentieth National
Conference on Artificial Intelligence AAAI ‘05 (Pittsburgh,
PA USA). AAAI Press 819-824

Madden, M., and Howley, T. 2004. Transfer of Experience
between Reinforcement Learning Environments with
Progressive Difficulty. Artificial Intelligence Review, Vol 21
375-398

Sherstov, A., and Stone, P. Improving Action Selection in
MDP’s via Knowledge Transfer. In Proceedings of the
Twentieth National Conference on Artificial Intelligence
AAAI ‘05 (Pittsburgh, PA USA). AAAI Press 1024-1029

Sutton, R., and Barto, A. 1998. Reinforcement Learning.
MIT Press, Cambridge MA USA

324

[7]1 Sutton, R., Precup, D., Singh, S. 1999. Between MDPs and
Semi-MDPs: A Framework for Temporal Abstraction in
Reinforcement Learning. Artificial Intelligence 112:181-211

[8] Taylor, M., and Stone, P. 2009. Transfer Learning for
Reinforcement Learning Domains: A Survey. Journal of
Machine Learning Research (JMLR), Vol 10(1) 1633-1685

[9] Taylor, M., Stone, P., and Liu, Y. 2007. Transfer Learning
for Inter-Task Mappings for Temporal Difference Learning.
Journal of Machine Learning Research (JMLR), Vol 8(1)
2125-2167

[10] Thomaz, A., and Breazeal, C. 2006. Reinforcement Learning
with Human Teachers: Evidence of Feedback and Guidance
with Implications for Learning Performance. In Proceedings
of the Twenty-first National Conference on Artificial
Intelligence AAAI 06 (Boston, MA USA). AAAI Press
1000-1006

[11] Thrun, S., and Schwartz, A. 1995. Finding Structure in
Reinforcement Learning. In Advancesin Neural Information
Processing Systems 7 NIPS’ 05 (Whistler, BC Canada). MIT
Press

[12] Watkins, C. 1989. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK

